- Собственное преобразование
- Proper transformation
Русско-английский словарь по прикладной математике и механике. Составитель словаря О.Б. Арушанян. 2013.
Русско-английский словарь по прикладной математике и механике. Составитель словаря О.Б. Арушанян. 2013.
Преобразование Хаусхолдера — (оператор Хаусхолдера) линейное преобразование векторного пространства , которое описывает его отображение относительно гиперплоскости, которая проходит через начало координат. Было предложено в 1958 американским математиком Элстоном… … Википедия
Преобразование Карунена-Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия
Преобразование Кархунена-Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия
Преобразование Карунена - Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия
Преобразование Кархунена - Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия
Преобразование Хотеллинга — Метод Главных Компонент (англ. Principal components analysis, PCA) один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… … Википедия
Преобразование подобия — Подобие преобразование евклидова пространства, при котором для любых двух точек A, B и их образов A , B имеет место соотношение | A B | = k | AB | , где k положительное число, называемое коэффициентом подобия. Содержание 1 Примеры 2 Связанны … Википедия
СОБСТВЕННОЕ ЗНАЧЕНИЕ — оператора (преобразования) А векторного пространства Lнад полем k элемент такой, что существует ненулевой вектор удовлетворяющий условию Вектор хв этом равенстве наз. собственным векторам оператора А, принадлежащим С. з. В случае, когда оператор… … Математическая энциклопедия
МОНОДРОМИИ ПРЕОБРАЗОВАНИЕ — преобразование слоев (или их гомотопич. инвариантов) расслоенного пространства, соответствующее нек рому пути в базе. Более точно, пусть локально тривиальное расслоение и пусть путь в Вс началом в точке и концом в . Тривиализация расслоения… … Математическая энциклопедия
Ортогональное преобразование — Ортогональное преобразование линейное преобразование евклидова пространства , сохраняющее длины или (что эквивалентно) скалярное произведение векторов. Это означает, что для любых двух векторов выполняется равенство где треугольными… … Википедия
ОРТОГОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ — линейное преобразование Аевклидова пространства, сохраняющее длины или (что эквивалентно этому) скалярное произведение векторов. О. п. и только они переводят ор тонормированный базис в ортонормированный. Необходимым и достаточным условием… … Математическая энциклопедия